Voice Activity Robust Detection of Noisy Speech in Toeplitz
نویسنده
چکیده
A Toeplitz de-noising method using the maximum eigenvalue is proposed for the voice activity detection at low SNR scenarios. This method uses the self-correlation sequence of speech bandwidth spectrum to construct a new symmetric Toeplitz matrix and to compute the largest eigenvalue, and the double decision thresholds in the largest eigenvalue are applied in the decision framewok. Simulation results show that the presented algorithm is more effective in distinguishing speech from noise and has better robustness under various noisy environments. Compared with novel method of recurrence rate analysis, this algorithm shows lower wrong decision rate. The algorithm is of low computational complexity and is simple in real-time realization.
منابع مشابه
A New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
متن کاملMulti-band long-term signal variability features for robust voice activity detection
In this paper, we propose robust features for the problem of voice activity detection (VAD). In particular, we extend the long term signal variability (LTSV) feature to accommodate multiple spectral bands. The motivation of the multi-band approach stems from the non-uniform frequency scale of speech phonemes and noise characteristics. Our analysis shows that the multi-band approach offers advan...
متن کاملRobust voice activity detection using perceptual wavelet-packet transform and Teager energy operator
In this letter, a robust voice activity detection (VAD) algorithm is presented. This proposed VAD algorithm makes use of the perceptual wavelet-packet transform and the Teager energy operator to compute a robust parameter called voice activity shape for VAD. The main advantage of this algorithm is that the preset threshold values or a priori knowledge of the SNR usually needed in conventional V...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملVoice activity detection in noisy environments
The subject of this paper is robust voice activity detection (VAD) in noisy environments, especially in car environments. We present a comparison between several frame based VAD feature extraction algorithms in combination with different classifiers. Experiments are carried out under equal test conditions using clean speech, clean speech with added car noise and speech recorded in car environme...
متن کامل